
q,

Chapter 9

Making MS Omics Data ML-Ready: SpeCollate Protocols

Muhammad Usman Tari Samuel Ebert, and Fahad Saeed

Abstract

The increasing complexity and volume of mass spectrometry (MS) data have presented new challenges and
opportunities for proteomics data analysis and interpretation. In this chapter, we provide a comprehensive
guide to transforming MS data for machine learning (ML) training, inference, and applications. The
chapter is organized into three parts. The first part describes the data analysis needed for MS-based
experiments and a general introduction to our deep learning model SpeCollate—which we will use
throughout the chapter for illustration. The second part of the chapter explores the transformation of
MS data for inference, providing a step-by-step guide for users to deduce peptides from their MS data. This
section aims to bridge the gap between data acquisition and practical applications by detailing the necessary
steps for data preparation and interpretation. In the final part, we present a demonstrative example of
SpeCollate, a deep learning-based peptide database search engine that overcomes the problems of simplistic
simulation of theoretical spectra and heuristic scoring functions for peptide-spectrum matches by generat-
ing joint embeddings for spectra and peptides. SpeCollate is a user-friendly tool with an intuitive command-
line interface to perform the search, showcasing the effectiveness of the techniques and methodologies
discussed in the earlier sections and highlighting the potential of machine learning in the context of mass
spectrometry data analysis. By offering a comprehensive overview of data transformation, inference, and
ML model applications for mass spectrometry, this chapter aims to empower researchers and practitioners in
leveraging the power of machine learning to unlock novel insights and drive innovation in the field of mass
spectrometry-based omics.

Key words Proteomics, Tandem mass spectrometry, Peptide identification, Database search,
Machine learning, Deep learning, Data preprocessing

1 Introduction

Machine learning (AI/ML) is a collection of data-driven technol-
ogies which can significantly advance mass spectrometry-based
omics research. Open-source repositories such as PRIDE [1],
ProteomeXchange [2], NIST [3], and MassIVE [4] make mass
spectrometry data available and reusable for research communities
to reproduce scientific results. While the availability of the open-
source data is a step in the right direction, the MS data made
available cannot be efficiently and effectively used for AI/ML

Frédérique Lisacek (ed.), Protein Bioinformatics, Methods in Molecular Biology, vol. 2836,
https://doi.org/10.1007/978-1-0716-4007-4_9,
© The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature 2024

135

applications. Therefore, specific research and development efforts
are needed to make these and other datasets not only FAIR [5], but
also ML-ready—which can then be shared through repositories,
knowledge bases, and other data-sharing resources.

136 Muhammad Usman Tariq et al.

In contrast to previous approaches needed for computational
workflows, for many AI/ML applications, a dataset must be suffi-
ciently large to be considered AI-/ML-ready. Newer workflows
that incorporate ML necessitate knowledge of big data manage-
ment and parallel and distributed computing to ensure that data is
partitioned in optimal manner to enable scalable computational
feasibility [6–8]. Other expectations that have surfaced because of
the development of ML models for MS-based omics include data
documentation to ensure reproducibility, data wrangling practices
that remove bias, and health and ethical decision that may have
been taken to select the data for training, validation, and most
importantly testing. Paying attention to ethical, legal, and social
implications of these specific decisions such as balancing the data
for gender, race, socioeconomic status, and other demographic
information for the patients can lead to improved minority health
and reduce health disparities. Such practices also ensure that new
sciences produced because of these ML-based tools are reliable
and reproducible. Other impacts include issues of identifiability
and privacy, impact on marginalized groups, health disparities,
and unintended consequences for the greater community. While
data scientists are still grappling with many aspects discussed above,
other aspects of AI/ML readiness are better understood. For exam-
ple, applications developed using PyTorch and TensorFlow and
specific ML models require the data in specific formats, with specific
dimensions and parameters. Other works that are specific to MS
data such as FAIR principles established for MS data and format are
widely known for MS-based omics practitioners.

Like other fields, it is imperative to establish an integrated
computational ecosystem that adapts the latest ML/AI technolo-
gies using best practice guidelines arising from community consen-
sus. However, many aspects of MS data that are also AI-/ML-ready
are established through exploratory testing. This includes how to
best transform the given MS data that becomes ML-ready, removal
of noise, labels and their specificity, and how much tolerance can be
expected for a given data parameter and the effect of those para-
meters on the performance of the ML model. Further, making data
AI-/ML-ready is not simply formulaic but is very specific to the
kind of problem that is being solved. We assert that all these
practices must be made available as open-source information so
that practitioners of ML do not waste time and resources trying
to figure out these MS-specific parameters that will result in the best
performance for a given problem. Establishment of these guidelines
will also ensure that resources are not wasted across teams and labs.

Making MS Omics Data ML-Ready: SpeCollate Protocols 137

The underlying question that we will try to answer in this
chapter is as follows: How can we make our MS data ML-ready
and reproducible? Given that much of ML readiness is dependent
on the specific problem for which model is being developed, as well
as the architecture of the ML model, makes this an interesting and
hard problem to solve. Therefore, to illustrate what factors must be
considered, we will first present our peptide deduction engine. This
will give an idea to the user about the model and what was consid-
ered in the design and implementation. Thereafter, we will show
how to make the data ML-ready, what design decisions for ML data
conversion must be taken, and what are their effects on the perfor-
mance. We end the chapter by giving a step-by-step tutorial on how
to install and run our cross-modal peptide deduction engine
SpeCollate.

2 SpeCollate: Deep Cross-Modal Similarity Network for Mass Spectrometry
Data-Based Peptide Deductions

The present-day identification of mass spectrometry (MS) based
proteomics data primarily relies on database search algorithms uti-
lizing numerical methods (Fig. 1). The operation of these numeri-
cal methods involves a comparison between the observed spectra
and the simulated spectra, the latter of which is derived from
theoretical peptides via a basic simulator [9–12]. Matching between
the experimental and theoretical spectra is performed using one of
various heuristic scoring functions, including dot product [13],
shared peak count [14, 15], and ion matches [16]. Other peptide
identification strategies such as de novo algorithms [17–28] try to
infer peptides directly from experimental spectra, with varying
degrees of success.

Fig. 1 Process of generating MS/MS spectra from a protein mixture using mass spectrometry analysis.
Proteins in the mixture are broken into peptides using the enzyme called trypsin which breaks the protein
strings at K and R bases generating peptides of varying sizes. This peptide mixture is then refined, and
peptides are moved through a mass spectrometer which generates an MS/MS spectrum for each different
peptide

138 Muhammad Usman Tariq et al.

Fig. 2 A generic proteomics flow. In silico digestion of the protein database is performed to generate peptides.
These peptides are then converted to the theoretical spectra and compared against the experimental spectra

To this day, no single scoring function from database search
techniques stands out as the most precise strategy. Significant
efforts have been made toward the development of computational
methods for peptide identification through database search [13–
16] (refer to Fig. 2 for a generic proteomics database search work-
flow) and de novo algorithms [17–28]. However, challenges in
peptide identification are pervasive and well-documented. These
issues include misidentifications or failure to identify peptides,
statistical accuracy (FDR), and inconsistencies across different
search engines [29]. Given the less than impressive accuracy of de
novo algorithms (<35%) [20] and database search algorithms
(30–80%) [30], and the absence of quality assessment benchmarks,
further in-depth investigation and evaluation of these database
search tools are essential.

Two key sources of heuristic errors introduced during numeri-
cal database search algorithms are (1) the simulation of spectra
(from peptides), i.e., how peptide deduction is conducted, and
(2) the peptide-spectrum match scoring function. Earlier studies
hint that numerical algorithms and traditional machine learning
(ML) algorithms might not effectively capture and integrate the
multidimensional aspects of MS data [31]. Contrarily, deep
learning methods [20] might provide a superior strategy for iden-
tifying peptides in noisy, high-dimensional MS data and peptides
bearing a high degree of similarity to one another [11]. Initial
exploration of deep learning methods in peptide deduction applied
to MS data shows promising results, with an average accuracy of
82–95% on chosen datasets. However, precision (at the amino acid
level) and recall (at the peptide level) remained somewhat
limited [20].

Making MS Omics Data ML-Ready: SpeCollate Protocols 139

Deep learning-based models such as Prosit [12] and Slider [32]
have shown promise. Prosit incorporates theoretical spectral simu-
lation into the database search pipeline, encoding peptide
sequences into a latent space and then decoding the embeddings
to predict fragment ion intensities. Slider uses deep convolutional
neural networks to score experimental spectra against theoretical
spectra. Another study [33] demonstrated how spectra for mod-
ified peptides could be embedded close to their nonmodified coun-
terparts in 32-length vectors, facilitating fast lookup of the
nonmodified version for a given spectrum. These studies under-
score the potential of deep learning models in modeling MS prote-
omics data and emphasize the need for further exploration into
sophisticated machine learning strategies.

SpeCollate [34] represents an example of such strategies, as it
learns a fixed-sized embedding of variable length experimental
spectra and peptide strings. This technique ensures a given spec-
trum and its corresponding peptide are projected close to each
other (based on L2 distance) in a shared Euclidean subspace. L2
distance is employed as the similarity matrix given its demonstrated
effectiveness with similarity ranking loss functions, such as triplet
loss, and superior performance to other similarity metrics, such as
cosine similarity. The design of SpeCollate takes inspiration from
FaceNet [35], with its choice of L2 distance as the similarity metric.
Composed of two subnetworks, the Spectrum Sub-Network (SSN)
and the Peptide Sub-Network (PSN), SpeCollate is trained on two
sets of data points, sparse spectrum vectors and encoded peptide
strings, to calculate loss value. The training process employs sex-
tuplets generated after each forward pass and uses online hardest
negative mining for selecting the negative spectra and peptides,
making the training process more efficient and faster. In the next
section, we will discuss the different data parameters that are used
for designing and developing SpeCollate so that researchers work-
ing in the area can consider these parameters for their own devel-
opment. The overall ML architecture of SpeCollate is shown in
Fig. 3.

3 Design Decisions for ML Data Conversion

To convert MS/MS data to ML-ready, several design decisions are
made to ensure compatibility with ML models and optimal perfor-
mance. Some of the decisions that you want to consider when
designing and developing your ML models that can process MS
data are as follows.

140 Muhammad Usman Tariq et al.

Fig. 3 SpeCollate: Deep Similarity Network for proteomics. The spectra Q are passed to SSN in the form of
sparse one-hot normalized representation. The positive and negative peptides (P, N) are passed to PSN one by
one in both forward and backward direction

3.1 Vectorization MS data is typically converted into vectors of fixed length where
each element represents a mass-to-charge (m/z) ratio bin. This
format is simple as it can be directly input to a fully connected
layer. However, it can be memory intensive as the vector size can be
upward of 80k in length. SpeCollate and DeepNovo use this repre-
sentation for spectra which makes the models simpler and quick to
train at the expense of memory intensive representation.

Making MS Omics Data ML-Ready: SpeCollate Protocols 141

Tradeoffs to consider Vectorization is a simple and efficient tech-
nique to represent data. However, there are some tradeoffs to be
considered: If data is discretized into larger bins, especially for high-
precision mass spectrometry data, information can be lost. This can
adversely impact a model’s performance. On the other hand, using
smaller bin sizes may result in too large vector sizes. In addition,
MS/MS data are inherently sparse. Converting the data into vec-
tors can exacerbate the sparsity resulting in hyper sparse vectors.
This can require specialized techniques and preprocessing layers in
the model to deal with hyper sparse data. Moreover, the size of the
vector is directly related to the computational and memory com-
plexity. Larger vector sizes provide higher resolution at the cost of
the increased complexity of the machine learning model and con-
suming memory. Conversely, shorter vectors may simplify model
layers and be memory efficient but might lose some valuable infor-
mation due to larger bin sizes.

3.2 Matrix

Representation

Spectrum is converted into a vector and then transformed into a
two-dimensional matrix where one dimension is the m/z and the
other dimension is the normalized right-shifted intensity values
vectors. This technique is used by DeepNovo which allows usage
of CNN to process spectra. Some versions of DeepNovo use matrix
representation when CNN layers are deployed at the input. It
allows for information rich representation at the cost of high
resource utilization.

Tradeoffs to consider Matrix representation allows for complex
information to be captured but suffers from scalability and compu-
tation complexity problems. Computation and memory require-
ments increase at least x26 when compared to the simple
vectorization technique, hence making this approach unsuitable
for large datasets or where more precise binning of m/z values is
needed. Note that all the tradeoffs of vectorization techniques still
apply to matrix representation in addition to the scalability issue.

3.3 Sequence

Representation

Spectrum is represented as two aligned sequences of discretized m/
z and intensity values. Since the sequence is not vectorized, the
precision value can be much higher (i.e., bin size can be much
smaller). Pairs of m/z and intensity values can be used as tokens.
This technique is used whenever a transformer network is employed
for processing spectra. Since there is no inherent positional infor-
mation in transformers, it needs to input using some external
mechanism, e.g., sinusoidal positional encoding method. This
technique is used by yHydra [36] to allow spectra to be represented
efficiently for attention layers.

142 Muhammad Usman Tariq et al.

Tradeoffs to consider Sequence representation allows for much
higher precision of m/z values which enables the model to capture
more useful information from the spectrum. However, the trans-
former networks required to properly capture the features can be
computationally expensive as the number of trainable parameters
increases quadratically (not considering the depth) with respect to
the input sequence size.

3.4 Normalization The intensity values within the vector are normalized to fixed scale
such as [0, 1] to reduce the impact of variations due to experimental
conditions and facilitate model convergence. Multistep normaliza-
tion can be employed as well where each spectrum is normalized
individually using min-max normalization and then each feature is
standardized in the entire dataset to have zero mean and unit
variance. Almost each machine learning employs these techniques.
Most machine learning models use normalization step as it reduces
variance of the data and allows for robust training with faster
converging models.

Tradeoffs to consider Normalization is essential for enabling
machine learning models to make sense of the data; however,
there can be some tradeoffs. The original signal is lost during
normalization, and it can affect feature importance which can
hurt model’s interpretability. Normalization does add to the
computational cost; however, it is usually offset by the efficient
convergence of the model. Some normalization techniques are
not reversible making it difficult to interpret results.

3.5 Peak Picking This is a critical step used in most MS/MS data processing which
aims to identify and extract the most significant peaks (ions) from
the raw data. The purpose is to reduce noise, simplify data repre-
sentation, and retain the most relevant information needed. This
can also help in removing outlier peaks and improving overall data
quality which helps the training process of machine learning mod-
els. SpeCollate and other models employ peak picking to remove
noisy data and reduce the number of total peaks in the spectrum.

Tradeoffs to consider Though peak picking is unanimously used
across most tools, it can have some tradeoffs. Depending on the
peak picking algorithm, information from the original signal might
be lost. Moreover, careful parameter tuning is needed to make sure
peak picking works properly across different types of spectra and
ensure reproducibility. Similar to normalization, peak picking also
adds slightly to the computational cost.

Making MS Omics Data ML-Ready: SpeCollate Protocols 143

3.6 Missing Value

Imputation

MS data often contain missing values due to experimental limita-
tions. Different techniques can be used to impute missing values,
e.g., zero fill, k-nearest neighbor, etc. Deep learning methods can
be used to predict missing peaks, e.g., transformers. Imputing these
missing values can help to create a completer and more consistent
dataset, which may improve the performance of machine learning
models. SpeCollate uses an auxiliary deep learning model to predict
missing peaks in spectra; however, the process can be used by any
database search tool.

Tradeoffs to consider Data imputation methods can reduce varia-
bility in the data leading to overfitting the model. Care must be
taken to impute the data in a consistent way which does not result
in information loss (reduce variability) in the data. Imputation
techniques assume that the missing values have the same distribu-
tion as the existing values. This assumption is true for most cases;
however, sometimes when this is not the case, the data quality
might be affected negatively. If a deep learning model is used for
data imputation, it can add significantly to the training time and
computational complexity.

Various data regarding wrangling operations that can be per-
formed on the MS data, its utility in various ML models, their effect
on the complexity of the model, the effect on training and accuracy
performance are summarized in Table 1.

4 Making MS Data ML-Ready: A Practitioner’s Approach

4.1 Obtaining the

Data: Public

Repositories

The first step in any ML pipeline for MS is acquiring the data.
Depending on your specific goals, there are a variety of public
data repositories. Some examples include the NIST mass spectral
library [3], which provides labeled spectra for several species and
instrument types in msp format. These can be downloaded directly
from the browser.

Another resource is MassIVE [4], which provides researcher-
submitted datasets for a variety of species and instrument types.
Most MassIVE data comes in mzML or mzXML format. Clicking
on the link in the “Title” page of each dataset will take you to a page
containing an ftp download link; you can use it to download all files
in the dataset as follows:

wget -r -p ftp://massive.ucsd.edu/{dataset}/

Assuming that the spectra’s data type is mzML, after running
the above command, the spectra will be in the folder {working_-
dir}/massive.ucsd.edu/{dataset}/peak/mzMLs. Depending on

N
o
rm

al
iz
at
io
n

Y
es

N
o
im

p
ac
t

P
ea
k
p
ic
ki
n
g

Y
es

144 Muhammad Usman Tariq et al.

Ta
bl
e
1

C
om

pa
ri
so
n
of
 d
at
a
re
pr
es
en
ta
ti
on
 a
pp
ro
ac
he
s
fo
r
da
ta
ba
se
 s
ea
rc
h
to
ol
s

S
pe
C
ol
la
te

D
ee
pN

ov
o

yH
yd
ra

Ef
fe
ct
 o
n
m
od
el
 c
om

pl
ex
it
y

Ef
fe
ct
 o
n
tr
ai
ni
ng
 t
im
e/

re
so
ur
ce
s

Ef
fe
ct
 o
n
ac
cu
ra
cy

V
ec
to
ri
za
ti
o
n

Y
es

Y
es

N
o

M
o
d
el
 c
o
m
p
le
xi
ty
 i
s
lo
w
 a
s

fu
ll
y
co
n
n
ec
te
d
 l
ay
er
s
ca
n

b
e
u
se
d

T
ra
in
in
g
 t
im

e
is
 u
su
al
ly
 l
o
w
 w
it
h

lo
w
 r
es
o
u
rc
e
u
ti
li
za
ti
o
n
.

H
o
w
ev
er
,
d
ep
en

d
in
g
 o
n
 t
h
e

ve
ct
o
r
si
ze
,
th
e
ti
m
in
g
 a
n
d

re
so
u
rc
e
u
ti
li
za
ti
o
n
 c
an

in
cr
ea
se

V
ec
to
ri
za
ti
o
n
 c
an
 a
ff
ec
t

ac
cu
ra
cy
 i
f
la
rg
e
b
in
 s
iz
e
is

u
se
d

M
at
ri
x

re
p
re
se
n
ta
ti
o
n

N
o

Y
es

N
o

S
u
it
ab
le
 f
o
r
C
N
N
 l
ay
er
s.
 C

an

in
cr
ea
se
 m

o
d
el
 c
o
m
p
le
xi
ty

if
 m

u
lt
ip
le
 c
o
n
vo

lu
ti
o
n

la
ye
rs
 a
re
 u
se
d

M
em

o
ry
 i
n
te
n
si
ve
 a
n
d
 h
en

ce

re
q
u
ir
es
 m

o
re
 r
es
o
u
rc
es
 t
o

p
ro
ce
ss

Im
p
ro
ve
s
ac
cu
ra
cy
 a
s
m
o
re

m
ea
n
in
g
fu
l
fe
at
u
re
s
ca
n
 b
e

ex
tr
ac
te
d
 u
si
n
g
 C

N
N
s
at
 t
h
e

co
st
 o
f
co
m
p
u
ta
ti
o
n
al

co
m
p
le
xi
ty

S
eq

u
en

ce

re
p
re
se
n
ta
ti
o
n

N
o

N
o

Y
es

M
o
d
el
 c
o
m
p
le
xi
ty
 in

cr
ea
se
s
as

at
te
n
ti
o
n
al
 l
ay
er
s
ar
e

n
ee
d
ed

U
sa
g
e
o
f
at
te
n
ti
o
n
 l
ay
er
s

in
cr
ea
se
s
co
m
p
u
ta
ti
o
n

co
m
p
le
xi
ty
.
M
o
re
o
ve
r,
 i
t
ta
ke
s

lo
n
g
er
 t
o
 t
ra
in
 a
tt
en

ti
o
n
 la
ye
rs

C
an
 i
m
p
ro
ve
 a
cc
u
ra
cy

si
g
n
ifi
ca
n
tl
y
as
 m

/
z
p
re
ci
si
o
n

is
 m

u
ch
 h
ig
h
er
 w

it
h
o
u
t
th
e

ex
tr
a
co
st
 o
f
m
em

o
ry

co
m
p
le
xi
ty

Y
es

Y
es

Im
p
ro
ve
s
tr
ai
n
in
g
 t
im

e
as
 m

o
d
el

co
n
ve
rg
es
 f
as
te
r

Im
p
ro
ve
s
ac
cu
ra
cy
 a
s
th
e

o
u
tl
yi
n
g
 v
al
u
es
 a
re
 r
em

o
ve
d

an
d
 m

o
d
el
 c
o
n
ve
rg
es
 e
as
il
y

Y
es

Y
es

C
an
 a
ll
o
w
 f
o
r
u
se
 o
f
si
m
p
le
r

m
o
d
el
 a
s
th
er
e
ar
e
a
sm

al
le
r

n
u
m
b
er
 o
f
p
ea
ks

S
im

p
le
r
la
ye
rs
 i
m
p
ro
ve
 t
im

e
co
m
p
le
xi
ty
 a
n
d
 r
es
o
u
rc
e
u
sa
g
e

R
em

o
vi
n
g
 n
o
is
e
im

p
ro
ve
s

ac
cu
ra
cy
 b
y
im

p
ro
vi
n
g

tr
ai
n
in
g
 d
at
a
q
u
al
it
y

M
is
si
n
g
 v
al
u
e

im
p
u
ta
ti
o
n

Y
es

N
o

N
o

M
ig
h
t
n
ee
d
 a
 s
ep
ar
at
e
m
o
d
el

to
 i
m
p
u
te
 m

is
si
n
g
 v
al
u
es

T
h
e
im

p
u
ta
ti
o
n
 m

o
d
el
 w

il
l
n
ee
d

se
p
ar
at
e
tr
ai
n
in
g
 a
d
d
in
g

si
g
n
ifi
ca
n
t
ti
m
e
an
d
 r
es
o
u
rc
e

re
q
u
ir
em

en
ts

Im
p
ro
ve
s
ac
cu
ra
cy
 f
o
r
al
l
to
o
ls

as
 t
h
e
d
at
a
q
u
al
it
y
is

im
p
ro
ve
d
 a
cr
o
ss
 t
h
e
b
o
ar
d

the size of the dataset, there may be multiple numbered mzML
files. For data sources such as the NIST library, the spectra will
come in msp format in an archived file. After downloading the
library of interest, you can extract the archive as follows:

Making MS Omics Data ML-Ready: SpeCollate Protocols 145

tar –xvzf {nist_filename}.tar.gz

4.2 Obtaining the

Data: Simulating from

a Proteome

Depending on your use case, you may not find the spectra you need
in any public library. In this case, it is possible to simulate spectra
from any set of peptides using Prosit [12]. This section outlines the
steps of an example workflow to simulate theoretical spectra for the
entire brown rat (Rattus norvegicus) proteome.

4.2.1 Downloading the

Proteome

You can download the rat proteome from UniProt [37]. In the
search bar, select “proteomes” and search for “rattus norvegicus.”
This will result in several results; you should select the “reference
proteome” with entry ID UP000002494. At the time of this
writing (June 2023), this entry contains 47,942 proteins. Down-
load the proteome as “FASTA” canonical; you have the option to
download either in compressed or uncompressed format. If you
downloaded the compressed file, extract it as follows; otherwise,
proceed to the next section.

gunzip {uniprot_file}.fasta.gz

4.2.2 Converting to

Peptides

At this point, you should have a single FASTA file containing
proteins. To generate spectra, these must be digested into peptides.
You can do this by installing Crux [38] and using the following
command (note that at the time of this writing, Prosit only sup-
ports simulating spectra for peptides from length 7 to 30, so the
length parameters should be in that range):

crux generate-peptides –min-length {min_length} --max-length

{max_length} {uniprot_file}.fasta

This will result in a file where each line is a tab-delimited list of
{peptide} {m+h mass of unmodified} {proteins containing this
peptide}.

4.2.3 Simulating with

Prosit

Prosit expects its input to be a csv file where the first line is
“modified_sequence,collision_energy,precursor_charge” and all
subsequent lines are the respective values for each spectrum to
simulate. You can convert the peptides from the crux output into
this format using any scripting language, with your choice of colli-
sion energies and precursor charges for each peptide. Now, you can
generate theoretical spectra from this file by navigating to the
“Spectral Library” tab on the Prosit site and following the

instructions to upload a peptides file. After submitting the job, you
will be provided with a job ID that you must save to access the
results later. Once the spectra are generated, you can download the
output files (in MSP format) by providing the job ID and unzip-
ping the resulting file. Note that Prosit can fail when given input
files with too many lines—the job may appear as “finished” with a
download option, but the download itself will not succeed. If this
occurs, you should split up the input into smaller files and upload
each separately.

146 Muhammad Usman Tariq et al.

4.3 Data Conversion SpeCollate and many other models require the input spectra to be
provided in Mascot generic format (mgf). Depending on how you
obtained your data in the previous steps, you are likely to have
either mzXML, mzML, or MSP files.

To convert mzXML or mzML files to MGF, you can use the
msconvert tool from ProteoWizard [39] as follows:

./msconvert {your_mzXML_or_mzML_file} --mgf

To convert MSP files, you can use the msp_to_mgf.py script
from the MspConverter repository [40], as follows (note that the
config file is optional, and both directories must exist):

python msp_to_mgf.py path/to/msp/folder/ path/to/output/

folder/ path/to/config.ini

4.4 Preprocessing At this point, you should have a folder containing one or more
converted MGF files. You may want to do further preprocessing,
such as normalization or filtering, before using the data in your
model. You can do this using the Pyteomics library [41], which
allows you to load, modify, and save spectra. The exact steps will
depend on your specific research problem; a few example workflows
are shown below.

4.4.1 Filtering Spectra by

Charge

from pyteomics import mgf

import glob

import os

mgf_dir = "/path/to/your/mgf/files/"

mgf_files = [f"{mgf_dir}{f}" for f in os.listdir(mgf_dir) if

f.endswith("mgf")]

max_charge = 2

criterion = lambda spec: spec[’params’][’charge’][0] <= max_-

charge

def filter_spectra(spectra, criterion):

for spectrum in spectra:

if criterion(spectrum):

yield spectrum

out_file = "/path/to/your_output_file.mgf"

with mgf.chain.from_iterable(mgf_files) as spectra:

filtered_spectra = filter_spectra(spectra, criterion)

Making MS Omics Data ML-Ready: SpeCollate Protocols 147

mgf.write(filtered_spectra, out_file)

4.4.2 Filtering Each

Spectrum to the Top n

Highest-Intensity Peaks

from pyteomics import mgf

import glob

import os

import numpy as np

mgf_dir = "/path/to/your/mgf/files/"

mgf_files = [f"{mgf_dir}{f}" for f in os.listdir(mgf_dir) if

f.endswith("mgf")]

peak_count = 50

def filter_peaks(spectrum, n):

peak_count = len(spectrum["intensity array"])

if peak_count <= n:

return spectrum

peak_indices_to_keep = sorted(np.argpartition(spectrum["in-

tensity array"], -n)[-n:])

spectrum["intensity array"] = spectrum["intensity array"]

[peak_indices_to_keep]

spectrum["m/z array"] = spectrum["m/z array"][peak_indices_-

to_keep]

spectrum["charge array"] = spectrum["charge array"][peak_in-

dices_to_keep]

return spectrum

def filter_spectra(spectra, peak_count):

for spectrum in spectra:

yield filter_peaks(spectrum, peak_count)

out_file = "/path/to/your_output_file.mgf"

with mgf.chain.from_iterable(mgf_files) as spectra:

filtered_spectra = filter_spectra(spectra, peak_count)

mgf.write(filtered_spectra, out_file)

¼

148 Muhammad Usman Tariq et al.

4.4.3 Normalizing

Intensity Values to Zero

Mean and Unit Variance

from pyteomics import mgf

import glob

import os

import numpy as np

mgf_dir = "/path/to/your/mgf/files/"

mgf_files = [f"{mgf_dir}{f}" for f in os.listdir(mgf_dir) if

f.endswith("mgf")]

all_intensities = []

with mgf.chain.from_iterable(mgf_files) as spectra:

for spectrum in spectra:

for intensity in spectrum[’intensity array’]:

all_intensities.append(intensity)

intensity_mean = np.mean(all_intensities)

intensity_std = np.std(all_intensities)

def normalize_peaks(spectrum, intensity_mean, intensity_std):

spectrum["intensity array"] = (spectrum["intensity array"] -

intensity_mean) / intensity_std

return spectrum

def normalize_spectra(spectra, intensity_mean, intensi-

ty_std):

for spectrum in spectra:

yield normalize_peaks(spectrum, intensity_mean, intensi-

ty_std)

out_file = "/path/to/your_output_file.mgf"

with mgf.chain.from_iterable(mgf_files) as spectra:

normalized_spectra = normalize_spectra(spectra, intensity_-

mean, intensity_std)

mgf.write(normalized_spectra, out_file)

After performing the desired preprocessing, your spectra
should now be ready for use with a machine learning model.

5 Installation Instructions for SpeCollate

5.1 Prerequisites

5.1.1 Software

• Python > 3.8, PyTorch > 1.6, NumPy, Pandas, SciKit-Learn

• Cuda Toolkit > 11.6

• OpenMS for protein database digestion

¼ ¼

Making MS Omics Data ML-Ready: SpeCollate Protocols 149

• Crux (for FDR analysis using its percolator implementation)

• Docker for running msconvert to convert raw spectra files
into mgf.

5.1.2 Hardware

Requirements

• A computer with Ubuntu > 16.04 or CentOS > 8.1

• 120 GBs of system memory and 8 CPU cores

• Cuda enabled GPU with at least 12 GBs of memory

5.1.3 Data Sources for

Mass Spectrometry

• Proteome Exchange [2]

5.1.4 Protein Databases • UniProt [37]

5.2 Installing Conda

Distribution of Python

1. Latest version of mini-conda for linux can be downloaded from
[42]. If you are using the terminal, the file can be downloaded
using the wget command:

wget https://repo.anaconda.com/miniconda/Miniconda3-
py310_23.1.0-1-Linux-x86.sh

2. Once the .sh file is downloaded, execute the file using the
command

./Miniconda3-py310_23.1.0-1-Linux-x86.sh

in the directory the file is located. Note that the file name
might be different for your download.

5.3 Installing

CudaToolkit

Use the following commands to install CudaToolkit on your
system:

1. Update the APT repository cache:

sudo apt-get update

2. Install Cuda SDK:

sudo apt-get install cuda

sudo apt-get install nvidia-gds

3. Reboot the system:

sudo reboot

Detailed instructions can be found at [43].

5.4 Installing

PyTorch with Cuda and

Other Required

Packages

1. Numpy, Pandas, and SciKit-Learn can be installed using the
following commands:

conda install numpy

conda install pandas

conda install scikit-learn

150 Muhammad Usman Tariq et al.

Fig. 4 Screenshot of requirements that are needed for installing PyTorch and related packages

You can download PyTorch from the official site [44].
Select the options as shown in Fig. 4.
For the Compute Platform option, make sure the CUDA

version is the same as you installed in the previous step.
Execute the generated command in your terminal.

6 Retraining SpeCollate

6.1 Download

Retrainable Executable

File for SpeCollate

1. Download the files from the “Training” page at [45].
The directory contains multiple files, including the

following:

• specollate-train: This is the executable for training
SpeCollate.

• specollate-search: This is the executable for database search.

• config.ini: parameter file for training and searching.

• models (dir): contains the pretrained model. New models
will also be stored here.

• percolator (dir): Percolator input (.pin) files can be placed
here after the search is complete.

2. Download the preprocessed data for training [45], and extract
using the command

tar -xzf specollate-training-data.tar.gz.

6.2 Steps to Retrain 1. Open the config.ini file from step 1 in your favorite text editor,
and set the following parameters:

• in_tensor_dir in [preprocess] section: absolute path of the
decompressed file from step 2 above.

• model_name in [ml] section: the name by which to wish to
save the trained model file.

Making MS Omics Data ML-Ready: SpeCollate Protocols 151

• other parameters in the [ml] section: You can adjust differ-
ent hyperparameters in the [ml] section, e.g., learning_rate,
dropout, etc.

2. Execute the specollate_train file:

./specollate_train

6.3 Performing

Database Search

6.3.1 Prerequisites for

Database Search

1. Download the files on the “Training” page at [45].
The extracted directory contains multiple files, including

the following:

• specollate-train: This is the executable for training
SpeCollate.

• specollate-search: This is the executable for database search.

• config.ini: parameter file for training and searching.

• models (dir): contains the pretrained model. New models
will also be stored here.

• percolator (dir): Percolator input (.pin) files can be placed
here after the search is complete.

2. Download the files on the “Search” page at [45]. Or you can
use your own spectra files in mgf format.

3. Download the human peptide database on the “Search” page
at [45]. You can also provide your own peptide database file.

6.3.2 Steps to Perform

Database Search

1. Set the following parameters in the [search] section of the
config.ini file:

• model_name: name of the model to be used. The model
should be in the /models directory.

• mgf_dir: absolute path to the directory containing mgf files
to be searched.

• prep_dir: absolute path to the directory where preprocessed
mgf files will be saved.

• pep_dir: absolute path to the directory containing peptide
database.

• out_pin_dir: absolute path to a directory where percolator
pin files will be saved. The directory must exist; otherwise,
the process will exit with an error.

• Set database search parameters, e.g.,
precursor_mass_tolerance.

2. Execute the specollate_search file:

./specollate_search

If you want to use the preprocessed spectra from a previous
run, use the -p False flag:

152 Muhammad Usman Tariq et al.

./specollate_search -p False

3. Once the search is complete, you can analyze the percolator
files using the crux percolator tool:

cd <out_pin_dir>

crux percolator target.pin decoy.pin --list-of-files T --
overwrite T

6.4 Notes

6.4.1 Parameters in

Configuration File (config.

ini)

• Ml:batch_size: batch size of spectra and labeled peptides used
when retraining the model. 1024 is the recommended value.
However, the user is free to experiment with different values.

• Input:master_port set the port to any five digit number below
65535. If another program is running using a port, the same
port number cannot be used. It’ll throw an error that the
request port is already in use.

• Search:spec_batch_size and Search:pep_batch_size are the
batch sizes used for the forward pass of spectra and peptides
through the network. Update their value according the avail-
able GPU memory on your device.

• Search:search_spec_batch_size is the batch size of spectra used
when performing the database search. Normally, a maximum of
512 max batch size is recommended, but it can be reduced
depending on the GPU memory.

6.4.2 PyTorch and Cuda

Versions

The model is trained on PyTorch version 1.6 with python 3.7.4 and
Cuda 11.6. However, the later version should work. User should
make sure to use the compatible version of PyTorch and Cuda. The
compatibility can be checked on the PyTorch website [44].

6.4.3 Preprocessing

Mass Spec Data

• Install docker on your Linux machine. Follow the instructions
at [46]. Make sure you have sudo permission to install docker,
or ask the system administrator to install it for you.

Download msconvert docker file using the following
command:

docker pull chambm/pwiz-skyline-i-agree-to-the-vendor-
licenses

• Download the required spectra file (at the moment, only Q
Exactive instrument is supported) in the raw format from
ProteomeExchange.

• Go to the link at [2].

• Scroll down and click Access Data button.

• Search for the dataset you are looking for and click the
dataset id.

• Scroll down and click Dataset FTP location.

Making MS Omics Data ML-Ready: SpeCollate Protocols 153

• Download the raw file(s).

• Once the file is downloaded, convert it to the mgf file using the
msconvert docker file:

docker run -it --rm -e WINEDEBUG¼-all -v ${PWD}:/data
chambm/pwiz-skyline-i-agree-to-the-vendor-licenses wine
msconvert /data/20111219_EXQ5_KiSh_SA_Label-
Free_HeLa_Proteome_Control_rep1_pH4.raw --mgf --fil-
ter "peakPicking true 2" --filter "msLevel 2" --filter
"precursorRefine" --filter "threshold count 100 most-
intense" --filter "zeroSamples removeExtra" -o mgfs

Change the command options depending on your require-
ments and the dataset. The details of the command option can
be found at [39].

Acknowledgments

Research reported in this publication was supported by the
National Institute of General Medical Sciences of the National
Institutes of Health under award number: R35GM153434. The
content is solely the responsibility of the authors and does not
necessarily represent the official views of the National Institutes of
Health.

References

1. Perez-Riverol Y, Bai J, Bandla C et al (2022)
The PRIDE database resources in 2022: a hub
for mass spectrometry-based proteomics evi-
dences. Nucleic Acids Res 50:D543–D552.
https://doi.org/10.1093/nar/gkab1038

2. Deutsch EW, Bandeira N, Perez-Riverol Y et al
(2023) The ProteomeXchange consortium at
10 years: 2023 update. Nucleic Acids Res 51:
D1539–D1548. https://doi.org/10.1093/
nar/gkac1040

3. Stein S (2008) NIST Libraries of Peptide Frag-
mentation Mass Spectra, NIST Standard Refer-
ence Database 1 C

4. Welcome to MassIVE. https://massive.ucsd.
edu/ProteoSAFe/static/massive.jsp. Accessed
28 Jun 2023

5. Wilkinson MD, Dumontier M, Aalbersberg Ij J
et al (2016) The FAIR guiding principles for
scientific data management and stewardship.
Sci Data 3:160018. https://doi.org/10.
1038/sdata.2016.18

6. Saeed F, Haseeb M (2022) High-performance
algorithms for mass spectrometry-based omics.
Springer International Publishing, Cham

7. Haseeb M, Saeed F (2023) GPU-acceleration
of the distributed-memory database peptide

search of mass spectrometry data. Sci Rep 13:
18713. https://doi.org/10.1038/s41598-
023-43033-w

8. Haseeb M, Saeed F (2021) High performance
computing framework for tera-scale database
search of mass spectrometry data. Nat Comput
Sci 1:550–561. https://doi.org/10.1038/
s43588-021-00113-z

9. Gabriels R, Martens L, Degroeve S (2019)
Updated MS2 PIP web server delivers fast and
accurate MS2 peak intensity prediction for mul-
tiple fragmentation methods, instruments and
labeling techniques. Nucleic Acids Res 47:
W295–W299. https://doi.org/10.1093/
nar/gkz299

10. Tiwary S, Levy R, Gutenbrunner P et al (2019)
High-quality MS/MS spectrum prediction for
data-dependent and data-independent acquisi-
tion data analysis. Nat Methods 16:519–525.
https://doi.org/10.1038/s41592-019-
0427-6

11. Zhou X-X, Zeng W-F, Chi H et al (2017)
pDeep: predicting MS/MS spectra of peptides
with deep learning. Anal Chem 89:12690–
12697. https://doi.org/10.1021/acs.ana
lchem.7b02566

154 Muhammad Usman Tariq et al.

12. Gessulat S, Schmidt T, Zolg DP et al (2019)
Prosit: proteome-wide prediction of peptide
tandem mass spectra by deep learning. Nat
Methods 16:509–518. https://doi.org/10.
1038/s41592-019-0426-7

13. Diament BJ, Noble WS (2011) Faster
SEQUEST searching for peptide identification
from tandem mass spectra. J Proteome Res 10:
3871–3879. https://doi.org/10.1021/
pr101196n

14. Craig R, Beavis RC (2004) TANDEM: match-
ing proteins with tandem mass spectra. Bioin-
formatics 20:1466–1467. https://doi.org/10.
1093/bioinformatics/bth092

15. Kong AT, Leprevost FV, Avtonomov DM et al
(2017) MSFragger: ultrafast and comprehen-
sive peptide identification in mass
spectrometry–based proteomics. Nat Methods
14:513–520. https://doi.org/10.1038/
nmeth.4256

16. Zhang J, Xin L, Shan B et al (2012)
PEAKS DB: De Novo sequencing assisted
database search for sensitive and accurate pep-
tide identification. Mol Cell Proteomics 11
(M111):010587. https://doi.org/10.1074/
mcp.M111.010587

17. Bandeira N (2007) Spectral networks: a new
approach to de novo discovery of protein
sequences and posttranslational modifications.
BioTechniques 42:687–695. https://doi.org/
10.2144/000112487

18. Grossmann J, Roos FF, Cieliebak M et al
(2005) AUDENS: a tool for automated pep-
tide de Novo sequencing. J Proteome Res 4:
1768–1774. https://doi.org/10.1021/
pr050070a

19. Fernandez-de-Cossio J, Gonzalez J, Satomi Y
et al (2000) Automated interpretation of
low-energy collision-induced dissociation spec-
tra by SeqMS, a software aid forde novo
sequencing by tandem mass spectrometry.
Electrophoresis 21:1694–1699. https://doi.
org/10.1002/(SICI)1522-2683(20000501)
21:9<1694::AID-ELPS1694>3.0.CO;2-W

20. Tran NH, Zhang X, Xin L et al (2017) De novo
peptide sequencing by deep learning. Proc Natl
Acad Sci 114:8247–8252. https://doi.org/10.
1073/pnas.1705691114

21. Taylor JA, Johnson RS (2001) Implementation
and uses of automated de Novo peptide
sequencing by tandem mass spectrometry.
Anal Chem 73:2594–2604. https://doi.org/
10.1021/ac001196o

22. Mo L, Dutta D, Wan Y, Chen T (2007)
MSNovo: a dynamic programming algorithm
for de Novo peptide sequencing via tandem

mass spectrometry. Anal Chem 79:4870–
4878. https://doi.org/10.1021/ac070039n

23. Fischer B, Roth V, Roos F et al (2005)
NovoHMM: A Hidden Markov Model for de
Novo Peptide Sequencing. Anal Chem 77:
7265–7273. https://doi.org/10.1021/
ac0508853

24. Yang H, Chi H, Zhou W-J et al (2017) Open-
pNovo: De Novo peptide sequencing with
thousands of protein modifications. J Prote-
ome Res 16:645–654. https://doi.org/10.
1021/acs.jproteome.6b00716

25. Ma B, Zhang K, Hendrie C et al (2003)
PEAKS: powerful software for peptidede novo
sequencing by tandem mass spectrometry.
Rapid Commun Mass Spectrom 17:2337–
2342. https://doi.org/10.1002/rcm.1196

26. Frank A, Pevzner P (2005) PepNovo: De Novo
peptide sequencing via probabilistic network
modeling. Anal Chem 77:964–973. https://
doi.org/10.1021/ac048788h

27. Jagannath S, Sabareesh V (2007) Peptide Frag-
ment Ion Analyser (PFIA): a simple and versa-
tile tool for the interpretation of tandem mass
spectrometric data andde novo sequencing of
peptides. Rapid Commun Mass Spectrom 21:
3033–3038. https://doi.org/10.1002/rcm.
3179

28. Chi H, Sun R-X, Yang B et al (2010) pNovo:
De novo peptide sequencing and identification
using HCD spectra. J Proteome Res 9:2713–
2724. https://doi.org/10.1021/pr100182k

29. Gupta N, Bandeira N, Keich U, Pevzner PA
(2011) Target-decoy approach and false
discovery rate: when things may go wrong. J
Am Soc Mass Spectrom 22:1111–1120.
https://doi.org/10.1007/s13361-011-
0139-3

30. Chick JM, Kolippakkam D, Nusinow DP et al
(2015) A mass-tolerant database search identi-
fies a large proportion of unassigned spectra in
shotgun proteomics as modified peptides. Nat
Biotechnol 33:743–749. https://doi.org/10.
1038/nbt.3267

31. Tran NH, Qiao R, Xin L et al (2019) Deep
learning enables de novo peptide sequencing
from data-independent-acquisition mass spec-
trometry. Nat Methods 16:63–66. https://doi.
org/10.1038/s41592-018-0260-3

32. Kudriavtseva P, Kashkinov M, Kertész-Farkas A
(2021) Deep convolutional neural networks
help scoring tandem mass spectrometry data
in database-searching approaches. J Proteome
Res 20:4708–4717. https://doi.org/10.
1021/acs.jproteome.1c00315

Making MS Omics Data ML-Ready: SpeCollate Protocols 155

33. Qin C, Luo X, Deng C et al (2021) Deep
learning embedder method and tool for mass
spectra similarity search. J Proteome 232:
104070. https://doi.org/10.1016/j.jprot.
2020.104070

34. Tariq MU, Saeed F (2021) SpeCollate: deep
cross-modal similarity network for mass spec-
trometry data based peptide deductions. PLoS
One 16:e0259349. https://doi.org/10.
1371/journal.pone.0259349

35. Schroff F, Kalenichenko D, Philbin J (2015)
FaceNet: a unified embedding for face recogni-
tion and clustering. In: 2015 IEEE conference
on computer vision and pattern recognition
(CVPR). IEEE, Boston, pp 815–823

36. Altenburg T, Muth T, Renard BY (2021) yHy-
dra: Deep Learning enables an Ultra Fast Open
Search by Jointly Embedding MS/MS Spectra
and Peptides of Mass Spectrometry-based Pro-
teomics. Bioinformatics

37. The UniProt Consortium, Bateman A, Martin
M-J et al (2023) UniProt: the universal protein
knowledgebase in 2023. Nucleic Acids Res 51:
D523–D531. https://doi.org/10.1093/nar/
gkac1052

38. McIlwain S, Tamura K, Kertesz-Farkas A et al
(2014) Crux: rapid open source protein tan-
dem mass spectrometry analysis. J Proteome
Res 13:4488–4491. https://doi.org/10.
1021/pr500741y

39. Chambers MC, Maclean B, Burke R et al
(2012) A cross-platform toolkit for mass spec-
trometry and proteomics. Nat Biotechnol 30:
918–920. https://doi.org/10.1038/nbt.
2377

40. Tariq MU, Ebert S (2023) MSPConverter.
https://github.com/pcdslab/mspconverter

41. Goloborodko AA, Levitsky LI, Ivanov MV,
Gorshkov MV (2013) Pyteomics—a Python
framework for exploratory data analysis and
rapid software prototyping in proteomics. J
Am Soc Mass Spectrom 24:301–304. https://
doi.org/10.1007/s13361-012-0516-6

42. Miniconda — conda documentation. https://
docs.conda.io/en/latest/miniconda.html.
Accessed 26 Jun 2023

43. NVIDIA CUDA Installation Guide for Linux.
https://docs.nvidia.com/cuda/cuda-installa
tion-guide-linux/index.html. Accessed
26 Jun 2023

44. PyTorch. https://pytorch.org/. Accessed
26 Jun 2023

45. Tariq MU, Saeed F SpeCollate. https://
pcdslab.github.io/specollate-page/

46. Install Docker Engine on Ubuntu | Docker
Documentation. https://docs.docker.com/
engine/install/ubuntu/. Accessed
26 Jun 2023

