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Making MS Omics Data ML-Ready: SpeCollate Protocols 

Muhammad Usman Tari Samuel Ebert, and Fahad Saeed 

Abstract 

The increasing complexity and volume of mass spectrometry (MS) data have presented new challenges and 
opportunities for proteomics data analysis and interpretation. In this chapter, we provide a comprehensive 
guide to transforming MS data for machine learning (ML) training, inference, and applications. The 
chapter is organized into three parts. The first part describes the data analysis needed for MS-based 
experiments and a general introduction to our deep learning model SpeCollate—which we will use 
throughout the chapter for illustration. The second part of the chapter explores the transformation of 
MS data for inference, providing a step-by-step guide for users to deduce peptides from their MS data. This 
section aims to bridge the gap between data acquisition and practical applications by detailing the necessary 
steps for data preparation and interpretation. In the final part, we present a demonstrative example of 
SpeCollate, a deep learning-based peptide database search engine that overcomes the problems of simplistic 
simulation of theoretical spectra and heuristic scoring functions for peptide-spectrum matches by generat-
ing joint embeddings for spectra and peptides. SpeCollate is a user-friendly tool with an intuitive command-
line interface to perform the search, showcasing the effectiveness of the techniques and methodologies 
discussed in the earlier sections and highlighting the potential of machine learning in the context of mass 
spectrometry data analysis. By offering a comprehensive overview of data transformation, inference, and 
ML model applications for mass spectrometry, this chapter aims to empower researchers and practitioners in 
leveraging the power of machine learning to unlock novel insights and drive innovation in the field of mass 
spectrometry-based omics. 

Key words Proteomics, Tandem mass spectrometry, Peptide identification, Database search, 
Machine learning, Deep learning, Data preprocessing 

1 Introduction 

Machine learning (AI/ML) is a collection of data-driven technol-
ogies which can significantly advance mass spectrometry-based 
omics research. Open-source repositories such as PRIDE [1], 
ProteomeXchange [2], NIST [3], and MassIVE [4] make mass 
spectrometry data available and reusable for research communities 
to reproduce scientific results. While the availability of the open-
source data is a step in the right direction, the MS data made 
available cannot be efficiently and effectively used for AI/ML
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applications. Therefore, specific research and development efforts 
are needed to make these and other datasets not only FAIR [5], but 
also ML-ready—which can then be shared through repositories, 
knowledge bases, and other data-sharing resources.
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In contrast to previous approaches needed for computational 
workflows, for many AI/ML applications, a dataset must be suffi-
ciently large to be considered AI-/ML-ready. Newer workflows 
that incorporate ML necessitate knowledge of big data manage-
ment and parallel and distributed computing to ensure that data is 
partitioned in optimal manner to enable scalable computational 
feasibility [6–8]. Other expectations that have surfaced because of 
the development of ML models for MS-based omics include data 
documentation to ensure reproducibility, data wrangling practices 
that remove bias, and health and ethical decision that may have 
been taken to select the data for training, validation, and most 
importantly testing. Paying attention to ethical, legal, and social 
implications of these specific decisions such as balancing the data 
for gender, race, socioeconomic status, and other demographic 
information for the patients can lead to improved minority health 
and reduce health disparities. Such practices also ensure that new 
sciences produced because of these ML-based tools are reliable 
and reproducible. Other impacts include issues of identifiability 
and privacy, impact on marginalized groups, health disparities, 
and unintended consequences for the greater community. While 
data scientists are still grappling with many aspects discussed above, 
other aspects of AI/ML readiness are better understood. For exam-
ple, applications developed using PyTorch and TensorFlow and 
specific ML models require the data in specific formats, with specific 
dimensions and parameters. Other works that are specific to MS 
data such as FAIR principles established for MS data and format are 
widely known for MS-based omics practitioners. 

Like other fields, it is imperative to establish an integrated 
computational ecosystem that adapts the latest ML/AI technolo-
gies using best practice guidelines arising from community consen-
sus. However, many aspects of MS data that are also AI-/ML-ready 
are established through exploratory testing. This includes how to 
best transform the given MS data that becomes ML-ready, removal 
of noise, labels and their specificity, and how much tolerance can be 
expected for a given data parameter and the effect of those para-
meters on the performance of the ML model. Further, making data 
AI-/ML-ready is not simply formulaic but is very specific to the 
kind of problem that is being solved. We assert that all these 
practices must be made available as open-source information so 
that practitioners of ML do not waste time and resources trying 
to figure out these MS-specific parameters that will result in the best 
performance for a given problem. Establishment of these guidelines 
will also ensure that resources are not wasted across teams and labs.



Making MS Omics Data ML-Ready: SpeCollate Protocols 137

The underlying question that we will try to answer in this 
chapter is as follows: How can we make our MS data ML-ready 
and reproducible? Given that much of ML readiness is dependent 
on the specific problem for which model is being developed, as well 
as the architecture of the ML model, makes this an interesting and 
hard problem to solve. Therefore, to illustrate what factors must be 
considered, we will first present our peptide deduction engine. This 
will give an idea to the user about the model and what was consid-
ered in the design and implementation. Thereafter, we will show 
how to make the data ML-ready, what design decisions for ML data 
conversion must be taken, and what are their effects on the perfor-
mance. We end the chapter by giving a step-by-step tutorial on how 
to install and run our cross-modal peptide deduction engine 
SpeCollate. 

2 SpeCollate: Deep Cross-Modal Similarity Network for Mass Spectrometry 
Data-Based Peptide Deductions 

The present-day identification of mass spectrometry (MS) based 
proteomics data primarily relies on database search algorithms uti-
lizing numerical methods (Fig. 1). The operation of these numeri-
cal methods involves a comparison between the observed spectra 
and the simulated spectra, the latter of which is derived from 
theoretical peptides via a basic simulator [9–12]. Matching between 
the experimental and theoretical spectra is performed using one of 
various heuristic scoring functions, including dot product [13], 
shared peak count [14, 15], and ion matches [16]. Other peptide 
identification strategies such as de novo algorithms [17–28] try  to  
infer peptides directly from experimental spectra, with varying 
degrees of success. 

Fig. 1 Process of generating MS/MS spectra from a protein mixture using mass spectrometry analysis. 
Proteins in the mixture are broken into peptides using the enzyme called trypsin which breaks the protein 
strings at K and R bases generating peptides of varying sizes. This peptide mixture is then refined, and 
peptides are moved through a mass spectrometer which generates an MS/MS spectrum for each different 
peptide
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Fig. 2 A generic proteomics flow. In silico digestion of the protein database is performed to generate peptides. 
These peptides are then converted to the theoretical spectra and compared against the experimental spectra 

To this day, no single scoring function from database search 
techniques stands out as the most precise strategy. Significant 
efforts have been made toward the development of computational 
methods for peptide identification through database search [13– 
16] (refer to Fig. 2 for a generic proteomics database search work-
flow) and de novo algorithms [17–28]. However, challenges in 
peptide identification are pervasive and well-documented. These 
issues include misidentifications or failure to identify peptides, 
statistical accuracy (FDR), and inconsistencies across different 
search engines [29]. Given the less than impressive accuracy of de 
novo algorithms (<35%) [20] and database search algorithms 
(30–80%) [30], and the absence of quality assessment benchmarks, 
further in-depth investigation and evaluation of these database 
search tools are essential. 

Two key sources of heuristic errors introduced during numeri-
cal database search algorithms are (1) the simulation of spectra 
(from peptides), i.e., how peptide deduction is conducted, and 
(2) the peptide-spectrum match scoring function. Earlier studies 
hint that numerical algorithms and traditional machine learning 
(ML) algorithms might not effectively capture and integrate the 
multidimensional aspects of MS data [31]. Contrarily, deep 
learning methods [20] might provide a superior strategy for iden-
tifying peptides in noisy, high-dimensional MS data and peptides 
bearing a high degree of similarity to one another [11]. Initial 
exploration of deep learning methods in peptide deduction applied 
to MS data shows promising results, with an average accuracy of 
82–95% on chosen datasets. However, precision (at the amino acid 
level) and recall (at the peptide level) remained somewhat 
limited [20].
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Deep learning-based models such as Prosit [12] and Slider [32] 
have shown promise. Prosit incorporates theoretical spectral simu-
lation into the database search pipeline, encoding peptide 
sequences into a latent space and then decoding the embeddings 
to predict fragment ion intensities. Slider uses deep convolutional 
neural networks to score experimental spectra against theoretical 
spectra. Another study [33] demonstrated how spectra for mod-
ified peptides could be embedded close to their nonmodified coun-
terparts in 32-length vectors, facilitating fast lookup of the 
nonmodified version for a given spectrum. These studies under-
score the potential of deep learning models in modeling MS prote-
omics data and emphasize the need for further exploration into 
sophisticated machine learning strategies. 

SpeCollate [34] represents an example of such strategies, as it 
learns a fixed-sized embedding of variable length experimental 
spectra and peptide strings. This technique ensures a given spec-
trum and its corresponding peptide are projected close to each 
other (based on L2 distance) in a shared Euclidean subspace. L2 
distance is employed as the similarity matrix given its demonstrated 
effectiveness with similarity ranking loss functions, such as triplet 
loss, and superior performance to other similarity metrics, such as 
cosine similarity. The design of SpeCollate takes inspiration from 
FaceNet [35], with its choice of L2 distance as the similarity metric. 
Composed of two subnetworks, the Spectrum Sub-Network (SSN) 
and the Peptide Sub-Network (PSN), SpeCollate is trained on two 
sets of data points, sparse spectrum vectors and encoded peptide 
strings, to calculate loss value. The training process employs sex-
tuplets generated after each forward pass and uses online hardest 
negative mining for selecting the negative spectra and peptides, 
making the training process more efficient and faster. In the next 
section, we will discuss the different data parameters that are used 
for designing and developing SpeCollate so that researchers work-
ing in the area can consider these parameters for their own devel-
opment. The overall ML architecture of SpeCollate is shown in 
Fig. 3. 

3 Design Decisions for ML Data Conversion 

To convert MS/MS data to ML-ready, several design decisions are 
made to ensure compatibility with ML models and optimal perfor-
mance. Some of the decisions that you want to consider when 
designing and developing your ML models that can process MS 
data are as follows.
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Fig. 3 SpeCollate: Deep Similarity Network for proteomics. The spectra Q are passed to SSN in the form of 
sparse one-hot normalized representation. The positive and negative peptides (P, N) are passed to PSN one by 
one in both forward and backward direction 

3.1 Vectorization MS data is typically converted into vectors of fixed length where 
each element represents a mass-to-charge (m/z) ratio bin. This 
format is simple as it can be directly input to a fully connected 
layer. However, it can be memory intensive as the vector size can be 
upward of 80k in length. SpeCollate and DeepNovo use this repre-
sentation for spectra which makes the models simpler and quick to 
train at the expense of memory intensive representation.
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Tradeoffs to consider Vectorization is a simple and efficient tech-
nique to represent data. However, there are some tradeoffs to be 
considered: If data is discretized into larger bins, especially for high-
precision mass spectrometry data, information can be lost. This can 
adversely impact a model’s performance. On the other hand, using 
smaller bin sizes may result in too large vector sizes. In addition, 
MS/MS data are inherently sparse. Converting the data into vec-
tors can exacerbate the sparsity resulting in hyper sparse vectors. 
This can require specialized techniques and preprocessing layers in 
the model to deal with hyper sparse data. Moreover, the size of the 
vector is directly related to the computational and memory com-
plexity. Larger vector sizes provide higher resolution at the cost of 
the increased complexity of the machine learning model and con-
suming memory. Conversely, shorter vectors may simplify model 
layers and be memory efficient but might lose some valuable infor-
mation due to larger bin sizes. 

3.2 Matrix 

Representation 

Spectrum is converted into a vector and then transformed into a 
two-dimensional matrix where one dimension is the m/z and the 
other dimension is the normalized right-shifted intensity values 
vectors. This technique is used by DeepNovo which allows usage 
of CNN to process spectra. Some versions of DeepNovo use matrix 
representation when CNN layers are deployed at the input. It 
allows for information rich representation at the cost of high 
resource utilization. 

Tradeoffs to consider Matrix representation allows for complex 
information to be captured but suffers from scalability and compu-
tation complexity problems. Computation and memory require-
ments increase at least x26 when compared to the simple 
vectorization technique, hence making this approach unsuitable 
for large datasets or where more precise binning of m/z values is 
needed. Note that all the tradeoffs of vectorization techniques still 
apply to matrix representation in addition to the scalability issue. 

3.3 Sequence 

Representation 

Spectrum is represented as two aligned sequences of discretized m/ 
z and intensity values. Since the sequence is not vectorized, the 
precision value can be much higher (i.e., bin size can be much 
smaller). Pairs of m/z and intensity values can be used as tokens. 
This technique is used whenever a transformer network is employed 
for processing spectra. Since there is no inherent positional infor-
mation in transformers, it needs to input using some external 
mechanism, e.g., sinusoidal positional encoding method. This 
technique is used by yHydra [36] to allow spectra to be represented 
efficiently for attention layers.
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Tradeoffs to consider Sequence representation allows for much 
higher precision of m/z values which enables the model to capture 
more useful information from the spectrum. However, the trans-
former networks required to properly capture the features can be 
computationally expensive as the number of trainable parameters 
increases quadratically (not considering the depth) with respect to 
the input sequence size. 

3.4 Normalization The intensity values within the vector are normalized to fixed scale 
such as [0, 1] to reduce the impact of variations due to experimental 
conditions and facilitate model convergence. Multistep normaliza-
tion can be employed as well where each spectrum is normalized 
individually using min-max normalization and then each feature is 
standardized in the entire dataset to have zero mean and unit 
variance. Almost each machine learning employs these techniques. 
Most machine learning models use normalization step as it reduces 
variance of the data and allows for robust training with faster 
converging models. 

Tradeoffs to consider Normalization is essential for enabling 
machine learning models to make sense of the data; however, 
there can be some tradeoffs. The original signal is lost during 
normalization, and it can affect feature importance which can 
hurt model’s interpretability. Normalization does add to the 
computational cost; however, it is usually offset by the efficient 
convergence of the model. Some normalization techniques are 
not reversible making it difficult to interpret results. 

3.5 Peak Picking This is a critical step used in most MS/MS data processing which 
aims to identify and extract the most significant peaks (ions) from 
the raw data. The purpose is to reduce noise, simplify data repre-
sentation, and retain the most relevant information needed. This 
can also help in removing outlier peaks and improving overall data 
quality which helps the training process of machine learning mod-
els. SpeCollate and other models employ peak picking to remove 
noisy data and reduce the number of total peaks in the spectrum. 

Tradeoffs to consider Though peak picking is unanimously used 
across most tools, it can have some tradeoffs. Depending on the 
peak picking algorithm, information from the original signal might 
be lost. Moreover, careful parameter tuning is needed to make sure 
peak picking works properly across different types of spectra and 
ensure reproducibility. Similar to normalization, peak picking also 
adds slightly to the computational cost.
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3.6 Missing Value 

Imputation 

MS data often contain missing values due to experimental limita-
tions. Different techniques can be used to impute missing values, 
e.g., zero fill, k-nearest neighbor, etc. Deep learning methods can 
be used to predict missing peaks, e.g., transformers. Imputing these 
missing values can help to create a completer and more consistent 
dataset, which may improve the performance of machine learning 
models. SpeCollate uses an auxiliary deep learning model to predict 
missing peaks in spectra; however, the process can be used by any 
database search tool. 

Tradeoffs to consider Data imputation methods can reduce varia-
bility in the data leading to overfitting the model. Care must be 
taken to impute the data in a consistent way which does not result 
in information loss (reduce variability) in the data. Imputation 
techniques assume that the missing values have the same distribu-
tion as the existing values. This assumption is true for most cases; 
however, sometimes when this is not the case, the data quality 
might be affected negatively. If a deep learning model is used for 
data imputation, it can add significantly to the training time and 
computational complexity. 

Various data regarding wrangling operations that can be per-
formed on the MS data, its utility in various ML models, their effect 
on the complexity of the model, the effect on training and accuracy 
performance are summarized in Table 1. 

4 Making MS Data ML-Ready: A Practitioner’s Approach 

4.1 Obtaining the 

Data: Public 

Repositories 

The first step in any ML pipeline for MS is acquiring the data. 
Depending on your specific goals, there are a variety of public 
data repositories. Some examples include the NIST mass spectral 
library [3], which provides labeled spectra for several species and 
instrument types in msp format. These can be downloaded directly 
from the browser. 

Another resource is MassIVE [4], which provides researcher-
submitted datasets for a variety of species and instrument types. 
Most MassIVE data comes in mzML or mzXML format. Clicking 
on the link in the “Title” page of each dataset will take you to a page 
containing an ftp download link; you can use it to download all files 
in the dataset as follows: 

wget -r -p ftp://massive.ucsd.edu/{dataset}/ 

Assuming that the spectra’s data type is mzML, after running 
the above command, the spectra will be in the folder {working_-
dir}/massive.ucsd.edu/{dataset}/peak/mzMLs. Depending on
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the size of the dataset, there may be multiple numbered mzML 
files. For data sources such as the NIST library, the spectra will 
come in msp format in an archived file. After downloading the 
library of interest, you can extract the archive as follows:
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tar –xvzf {nist_filename}.tar.gz 

4.2 Obtaining the 

Data: Simulating from 

a Proteome 

Depending on your use case, you may not find the spectra you need 
in any public library. In this case, it is possible to simulate spectra 
from any set of peptides using Prosit [12]. This section outlines the 
steps of an example workflow to simulate theoretical spectra for the 
entire brown rat (Rattus norvegicus) proteome. 

4.2.1 Downloading the 

Proteome 

You can download the rat proteome from UniProt [37]. In the 
search bar, select “proteomes” and search for “rattus norvegicus.” 
This will result in several results; you should select the “reference 
proteome” with entry ID UP000002494. At the time of this 
writing (June 2023), this entry contains 47,942 proteins. Down-
load the proteome as “FASTA” canonical; you have the option to 
download either in compressed or uncompressed format. If you 
downloaded the compressed file, extract it as follows; otherwise, 
proceed to the next section. 

gunzip {uniprot_file}.fasta.gz 

4.2.2 Converting to 

Peptides 

At this point, you should have a single FASTA file containing 
proteins. To generate spectra, these must be digested into peptides. 
You can do this by installing Crux [38] and using the following 
command (note that at the time of this writing, Prosit only sup-
ports simulating spectra for peptides from length 7 to 30, so the 
length parameters should be in that range): 

crux generate-peptides –min-length {min_length} --max-length 

{max_length} {uniprot_file}.fasta 

This will result in a file where each line is a tab-delimited list of 
{peptide} {m+h mass of unmodified} {proteins containing this 
peptide}. 

4.2.3 Simulating with 

Prosit 

Prosit expects its input to be a csv file where the first line is 
“modified_sequence,collision_energy,precursor_charge” and all 
subsequent lines are the respective values for each spectrum to 
simulate. You can convert the peptides from the crux output into 
this format using any scripting language, with your choice of colli-
sion energies and precursor charges for each peptide. Now, you can 
generate theoretical spectra from this file by navigating to the 
“Spectral Library” tab on the Prosit site and following the



instructions to upload a peptides file. After submitting the job, you 
will be provided with a job ID that you must save to access the 
results later. Once the spectra are generated, you can download the 
output files (in MSP format) by providing the job ID and unzip-
ping the resulting file. Note that Prosit can fail when given input 
files with too many lines—the job may appear as “finished” with a 
download option, but the download itself will not succeed. If this 
occurs, you should split up the input into smaller files and upload 
each separately. 
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4.3 Data Conversion SpeCollate and many other models require the input spectra to be 
provided in Mascot generic format (mgf). Depending on how you 
obtained your data in the previous steps, you are likely to have 
either mzXML, mzML, or MSP files. 

To convert mzXML or mzML files to MGF, you can use the 
msconvert tool from ProteoWizard [39] as follows: 

./msconvert {your_mzXML_or_mzML_file} --mgf 

To convert MSP files, you can use the msp_to_mgf.py script 
from the MspConverter repository [40], as follows (note that the 
config file is optional, and both directories must exist): 

python msp_to_mgf.py path/to/msp/folder/ path/to/output/ 

folder/ path/to/config.ini 

4.4 Preprocessing At this point, you should have a folder containing one or more 
converted MGF files. You may want to do further preprocessing, 
such as normalization or filtering, before using the data in your 
model. You can do this using the Pyteomics library [41], which 
allows you to load, modify, and save spectra. The exact steps will 
depend on your specific research problem; a few example workflows 
are shown below. 

4.4.1 Filtering Spectra by 

Charge 

from pyteomics import mgf 

import glob 

import os 

mgf_dir = "/path/to/your/mgf/files/" 

mgf_files = [f"{mgf_dir}{f}" for f in os.listdir(mgf_dir) if 

f.endswith("mgf")] 

max_charge = 2 

criterion = lambda spec: spec[’params’][’charge’][0] <= max_-

charge



def filter_spectra(spectra, criterion): 

for spectrum in spectra: 

if criterion(spectrum): 

yield spectrum 

out_file = "/path/to/your_output_file.mgf" 

with mgf.chain.from_iterable(mgf_files) as spectra: 

filtered_spectra = filter_spectra(spectra, criterion) 
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mgf.write(filtered_spectra, out_file) 

4.4.2 Filtering Each 

Spectrum to the Top n 

Highest-Intensity Peaks 

from pyteomics import mgf 

import glob 

import os 

import numpy as np 

mgf_dir = "/path/to/your/mgf/files/" 

mgf_files = [f"{mgf_dir}{f}" for f in os.listdir(mgf_dir) if 

f.endswith("mgf")] 

peak_count = 50 

def filter_peaks(spectrum, n): 

peak_count = len(spectrum["intensity array"]) 

if peak_count <= n: 

return spectrum 

peak_indices_to_keep = sorted(np.argpartition(spectrum["in-

tensity array"], -n)[-n:]) 

spectrum["intensity array"] = spectrum["intensity array"] 

[peak_indices_to_keep] 

spectrum["m/z array"] = spectrum["m/z array"][peak_indices_-

to_keep] 

spectrum["charge array"] = spectrum["charge array"][peak_in-

dices_to_keep] 

return spectrum 

def filter_spectra(spectra, peak_count): 

for spectrum in spectra: 

yield filter_peaks(spectrum, peak_count) 

out_file = "/path/to/your_output_file.mgf" 

with mgf.chain.from_iterable(mgf_files) as spectra: 

filtered_spectra = filter_spectra(spectra, peak_count) 

mgf.write(filtered_spectra, out_file)



¼
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4.4.3 Normalizing 

Intensity Values to Zero 

Mean and Unit Variance 

from pyteomics import mgf 

import glob 

import os 

import numpy as np 

mgf_dir = "/path/to/your/mgf/files/" 

mgf_files = [f"{mgf_dir}{f}" for f in os.listdir(mgf_dir) if 

f.endswith("mgf")] 

all_intensities = [] 

with mgf.chain.from_iterable(mgf_files) as spectra: 

for spectrum in spectra: 

for intensity in spectrum[’intensity array’]: 

all_intensities.append(intensity) 

intensity_mean = np.mean(all_intensities) 

intensity_std = np.std(all_intensities) 

def normalize_peaks(spectrum, intensity_mean, intensity_std): 

spectrum["intensity array"] = (spectrum["intensity array"] -

intensity_mean) / intensity_std 

return spectrum 

def normalize_spectra(spectra, intensity_mean, intensi-

ty_std): 

for spectrum in spectra: 

yield normalize_peaks(spectrum, intensity_mean, intensi-

ty_std) 

out_file = "/path/to/your_output_file.mgf" 

with mgf.chain.from_iterable(mgf_files) as spectra: 

normalized_spectra = normalize_spectra(spectra, intensity_-

mean, intensity_std) 

mgf.write(normalized_spectra, out_file) 

After performing the desired preprocessing, your spectra 
should now be ready for use with a machine learning model. 

5 Installation Instructions for SpeCollate 

5.1 Prerequisites 

5.1.1 Software 

• Python > 3.8, PyTorch > 1.6, NumPy, Pandas, SciKit-Learn 

• Cuda Toolkit > 11.6 

• OpenMS for protein database digestion
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• Crux (for FDR analysis using its percolator implementation) 

• Docker for running msconvert to convert raw spectra files 
into mgf. 

5.1.2 Hardware 

Requirements 

• A computer with Ubuntu > 16.04 or CentOS > 8.1 

• 120 GBs of system memory and 8 CPU cores 

• Cuda enabled GPU with at least 12 GBs of memory 

5.1.3 Data Sources for 

Mass Spectrometry 

• Proteome Exchange [2] 

5.1.4 Protein Databases • UniProt [37] 

5.2 Installing Conda 

Distribution of Python 

1. Latest version of mini-conda for linux can be downloaded from 
[42]. If you are using the terminal, the file can be downloaded 
using the wget command: 

wget https://repo.anaconda.com/miniconda/Miniconda3-
py310_23.1.0-1-Linux-x86.sh 

2. Once the .sh file is downloaded, execute the file using the 
command 

./Miniconda3-py310_23.1.0-1-Linux-x86.sh 

in the directory the file is located. Note that the file name 
might be different for your download. 

5.3 Installing 

CudaToolkit 

Use the following commands to install CudaToolkit on your 
system: 

1. Update the APT repository cache: 

sudo apt-get update 

2. Install Cuda SDK: 

sudo apt-get install cuda 

sudo apt-get install nvidia-gds 

3. Reboot the system: 

sudo reboot 

Detailed instructions can be found at [43]. 

5.4 Installing 

PyTorch with Cuda and 

Other Required 

Packages 

1. Numpy, Pandas, and SciKit-Learn can be installed using the 
following commands: 

conda install numpy 

conda install pandas 

conda install scikit-learn
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Fig. 4 Screenshot of requirements that are needed for installing PyTorch and related packages 

You can download PyTorch from the official site [44]. 
Select the options as shown in Fig. 4. 
For the Compute Platform option, make sure the CUDA 

version is the same as you installed in the previous step. 
Execute the generated command in your terminal. 

6 Retraining SpeCollate 

6.1 Download 

Retrainable Executable 

File for SpeCollate 

1. Download the files from the “Training” page at [45]. 
The directory contains multiple files, including the 

following: 

• specollate-train: This is the executable for training 
SpeCollate. 

• specollate-search: This is the executable for database search. 

• config.ini: parameter file for training and searching. 

• models (dir): contains the pretrained model. New models 
will also be stored here. 

• percolator (dir): Percolator input (.pin) files can be placed 
here after the search is complete. 

2. Download the preprocessed data for training [45], and extract 
using the command 

tar -xzf specollate-training-data.tar.gz. 

6.2 Steps to Retrain 1. Open the config.ini file from step 1 in your favorite text editor, 
and set the following parameters: 

• in_tensor_dir in [preprocess] section: absolute path of the 
decompressed file from step 2 above. 

• model_name in [ml] section: the name by which to wish to 
save the trained model file.
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• other parameters in the [ml] section: You can adjust differ-
ent hyperparameters in the [ml] section, e.g., learning_rate, 
dropout, etc. 

2. Execute the specollate_train file: 

./specollate_train 

6.3 Performing 

Database Search 

6.3.1 Prerequisites for 

Database Search 

1. Download the files on the “Training” page at [45]. 
The extracted directory contains multiple files, including 

the following: 

• specollate-train: This is the executable for training 
SpeCollate. 

• specollate-search: This is the executable for database search. 

• config.ini: parameter file for training and searching. 

• models (dir): contains the pretrained model. New models 
will also be stored here. 

• percolator (dir): Percolator input (.pin) files can be placed 
here after the search is complete. 

2. Download the files on the “Search” page at [45]. Or you can 
use your own spectra files in mgf format. 

3. Download the human peptide database on the “Search” page 
at [45]. You can also provide your own peptide database file. 

6.3.2 Steps to Perform 

Database Search 

1. Set the following parameters in the [search] section of the 
config.ini file: 

• model_name: name of the model to be used. The model 
should be in the /models directory. 

• mgf_dir: absolute path to the directory containing mgf files 
to be searched. 

• prep_dir: absolute path to the directory where preprocessed 
mgf files will be saved. 

• pep_dir: absolute path to the directory containing peptide 
database. 

• out_pin_dir: absolute path to a directory where percolator 
pin files will be saved. The directory must exist; otherwise, 
the process will exit with an error. 

• Set database search parameters, e.g., 
precursor_mass_tolerance. 

2. Execute the specollate_search file: 

./specollate_search 

If you want to use the preprocessed spectra from a previous 
run, use the -p False flag:
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./specollate_search -p False 

3. Once the search is complete, you can analyze the percolator 
files using the crux percolator tool: 

cd <out_pin_dir> 

crux percolator target.pin decoy.pin --list-of-files T --
overwrite T 

6.4 Notes 

6.4.1 Parameters in 

Configuration File (config. 

ini) 

• Ml:batch_size: batch size of spectra and labeled peptides used 
when retraining the model. 1024 is the recommended value. 
However, the user is free to experiment with different values. 

• Input:master_port set the port to any five digit number below 
65535. If another program is running using a port, the same 
port number cannot be used. It’ll throw an error that the 
request port is already in use. 

• Search:spec_batch_size and Search:pep_batch_size are the 
batch sizes used for the forward pass of spectra and peptides 
through the network. Update their value according the avail-
able GPU memory on your device. 

• Search:search_spec_batch_size is the batch size of spectra used 
when performing the database search. Normally, a maximum of 
512 max batch size is recommended, but it can be reduced 
depending on the GPU memory. 

6.4.2 PyTorch and Cuda 

Versions 

The model is trained on PyTorch version 1.6 with python 3.7.4 and 
Cuda 11.6. However, the later version should work. User should 
make sure to use the compatible version of PyTorch and Cuda. The 
compatibility can be checked on the PyTorch website [44]. 

6.4.3 Preprocessing 

Mass Spec Data 

• Install docker on your Linux machine. Follow the instructions 
at [46]. Make sure you have sudo permission to install docker, 
or ask the system administrator to install it for you. 

Download msconvert docker file using the following 
command: 

docker pull chambm/pwiz-skyline-i-agree-to-the-vendor-
licenses 

• Download the required spectra file (at the moment, only Q 
Exactive instrument is supported) in the raw format from 
ProteomeExchange. 

• Go to the link at [2]. 

• Scroll down and click Access Data button. 

• Search for the dataset you are looking for and click the 
dataset id. 

• Scroll down and click Dataset FTP location.
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• Download the raw file(s). 

• Once the file is downloaded, convert it to the mgf file using the 
msconvert docker file: 

docker run -it --rm -e WINEDEBUG¼-all -v ${PWD}:/data 
chambm/pwiz-skyline-i-agree-to-the-vendor-licenses wine 
msconvert /data/20111219_EXQ5_KiSh_SA_Label-
Free_HeLa_Proteome_Control_rep1_pH4.raw --mgf --fil-
ter "peakPicking true 2" --filter "msLevel 2" --filter 
"precursorRefine" --filter "threshold count 100 most-
intense" --filter "zeroSamples removeExtra" -o mgfs 

Change the command options depending on your require-
ments and the dataset. The details of the command option can 
be found at [39]. 
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